Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis.
نویسندگان
چکیده
The Arabidopsis NPR1/NIM1 gene is a key regulator of systemic acquired resistance (SAR). Over-expression of NPR1 leads to enhanced resistance in Arabidopsis. To investigate the role of NPR1 in monocots, we over-expressed the Arabidopsis NPR1 in rice and challenged the transgenic plants with Xanthomonas oryzae pv. oryzae (Xoo), the rice bacterial blight pathogen. The transgenic plants displayed enhanced resistance to Xoo. RNA blot hybridization indicates that enhanced resistance requires expression of NPR1 mRNA above a threshold level in rice. To identify components mediating the resistance controlled by NPR1, we used NPR1 as bait in a yeast two-hybrid screen. We isolated four cDNA clones encoding rice NPR1 interactors (named rTGA2.1, rTGA2.2, rTGA2.3 and rLG2) belonging to the bZIP family. rTGA2.1, rTGA2.2 and rTGA2.3 share 75, 76 and 78% identity with Arabidopsis TGA2, respectively. In contrast, rLG2 shares highest identity (81%) to the maize liguleless (LG2) gene product, which is involved in establishing the leaf blade-sheath boundary. The interaction of NPR1 with the rice bZIP proteins in yeast was impaired by the npr1-1 and npr1-2 mutations, but not by the nim1-4 mutation. The NPR1-rTGA2.1 interaction was confirmed by an in vitro pull-down experiment. In gel mobility shift assays, rTGA2.1 binds to the rice RCH10 promoter and to a cis-element required sequence-specifically for salicylic acid responsiveness. This is the first demonstration that the Arabidopsis NPR1 gene can enhance disease resistance in a monocot plant. These results also suggest that monocot and dicot plants share a conserved signal transduction pathway controlling NPR1-mediated resistance.
منابع مشابه
Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1.
Arabidopsis NPR1/NIM1 is a key regulator of systemic acquired resistance (SAR), which confers lasting broad-spectrum resistance. Over-expression of Arabidopsis NPR1 or the NPR1 homolog 1 (NH1) in rice results in enhanced resistance to the pathogen Xanthomonasoryzae pv. oryzae (Xoo), suggesting the presence of a related defense pathway in rice. We investigated this pathway in rice by identifying...
متن کاملSalicylic Acid Signaling Pathway in Rice and the Potential Applications of Its Regulators
The salicylic acid (SA) signaling pathway plays a crucial role in systemic acquired resistance in dicots. Several chemical inducers, which are also called “plant activators,” such as benzothiadiazole (BTH), protect plants from diseases by acting on the SA signaling pathway. Several studies by us and other groups have revealed that rice also has the SA signaling pathway that shares signaling com...
متن کاملA novel signaling pathway controlling induced systemic resistance in Arabidopsis.
Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquire...
متن کاملRice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance.
Benzothiadiazole (BTH) is a so-called plant activator and protects plants from diseases by activating the salicylic acid (SA) signaling pathway. By microarray screening, we identified BTH- and SA-inducible WRKY transcription factor (TF) genes that were upregulated within 3 h after BTH treatment. Overexpression of one of them, WRKY45, in rice (Oryza sativa) markedly enhanced resistance to rice b...
متن کاملOverexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light.
Arabidopsis NPR1/NIM1 is a key regulator of systemic acquired resistance (SAR), which confers lasting broad-spectrum resistance. Previous reports indicate that rice has a disease-resistance pathway similar to the Arabidopsis SAR pathway. Here we report the isolation and characterization of a rice NPR1 homologue (NH1). Transgenic rice plants overexpressing NH1 (NH1ox) acquire high levels of resi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2001